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Abstract. Calculated Fermi surfaces of Cu1−xNix binary alloys are used to interpret measure-
ments of the periods of oscillations in the magnetic coupling across Cu1−xNix alloy spacers.
The lack of observation of damping of such oscillations is shown to be the consequence of the
mean free paths on the Fermi surface being long compared with the oscillation periods. It is
argued that oscillatory magnetic coupling is an important new technique for probing the Fermi
surfaces of random binary alloys.

1. Introduction

The defining property of the metallic state is the Fermi surface and therefore its measurement
has been at the centre of interest in metal physics. The existence of the Fermi surface in
metallic systems, as identified by the relation of its features with observed properties of
the system, is the most compelling evidence for the validity of the Fermi liquid picture for
electrons in metals.

Experimental techniques related to the de Haas–van Alphen oscillations [1, 2] have been
proven very powerful tools in the ‘fermiology’ and most of the pure-metal Fermi surfaces
have been studied [1] using these techniques more than two decades ago. Unfortunately,
the application of these techniques is restricted to the case of pure metals or random binary
alloys with very small concentration (less than 1% [3]) due to the scattering (introduced
by disorder) of the electrons in the quasiparticle states on the Fermi surface. Indeed, the
sufficient condition for the applicability of these techniques [1, 2] isωcτ � 1, whereωc is
the cyclotron frequency (eB/me for a given magnetic fieldB). If the average time between
collisions is small, enormous magnetic fields are required for the study of the Fermi surface
of the material. An interpretation of the above condition is that the energy differences of the
Landau levels in the presence of a magnetic field must be larger than the uncertainty (due
to disorder) in the energy of these levels. Equivalently, the time required for a closed orbit
in the presence of a magnetic field must be shorter than the lifetime of the quasiparticle
states at the Fermi surface. For random binary alloys, even for very large magnetic fields
and relatively small concentrations, this condition is far from being satisfied.

An alternative probe which in principle could be applied to the study of the Fermi
surfaces of binary alloys for any concentration is the angular correlation of annihilation
radiation (ACAR) experimental technique [4]. It does not require the electronic states to
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have long lifetimes and can be used to study Fermi surfaces in so far as they are well defined.
The Fermi surface of a random binary alloy is thought to be well defined when the interband
energy distances are much larger than the energy uncertainty ¯h/τ introduced by disorder,
or equivalently when the wavevector uncertaintyδk is much smaller than the linear sizes of
the Fermi surface, i.e. the size of the bellies, necks or pockets that might exist on the Fermi
surface. The method up to now has had to rely on theoretical calculations of the Fermi
surface for the comparison of its measurements [5–7]. For example in reference [5] the neck
of the Fermi surface of Cu1−xNix calculated with KKR-CPA electronic structure method was
compared with ACAR measurements [8, 9]. These theoretical calculations usually combine
an electronic structure method (usuallyab initio) with the CPA ‘mean-field’ approach which
is the most accurate ‘single-site’ approximation to the random-binary-alloy problem [10, 11].

During the last decade a surprising new probe appeared, to compete with ACAR for
measuring the alloy Fermi surfaces, namely the oscillatory magnetic coupling in metallic
multilayers. The observation that two ferromagnetic layers are coupled antiferromagnetically
through a metallic spacer [12] and that this coupling oscillates [13], switching between
ferromagnetic and antiferromagnetic as the spacer thickness increases, is one of the most
fascinating discoveries in solid state physics during the last decade. The oscillatory
behaviour was very soon related to the Fermi surface of the bulk spacer material [14, 15]. In
particular every extremal vectorQ on the bulk spacer Fermi surface parallel to the direction
of growth has been proven to be the wavevector of an oscillation in the interaction of two
magnetic layers across the spacer. In the case of a pure-metallic spacer, all of the theoretical
approaches [14–16] for obtaining the interaction energyδE(L) of the ferromagnetic layers
as a function of the spacer thicknessL lead to an asymptotic expression of the form

δE(L) = − 1

L2

∑
ν

Aν cos(QνL+ φν) (1)

at spacer thicknessesL large compared with the monolayer size. In the above formula the
summation is over all of the extremal vectorsQν on the bulk spacer Fermi surface, and
Aν andφν are the amplitude and the phase of each of the contributing oscillatory terms. It
should be mentioned that the 1/L2 law might be modified to an 1/L3/2 or 1/L law in the
cases of extremal vectors which are constant in one of or both of the in-plane directions
respectively [17]. In the case of a simple metallic spacer, such as Cu, the theory is in
very good quantitative agreement with experiment [14, 15]. The discreteness of the spacer
thickness, which is always an integer number of monolayers, results in an aliasing effect
[14, 15, 18], i.e. the fact that among all of the equivalent (due to periodicity) extremal
vectors, the smallest ones correspond to the measured periods.

In the case of binary alloy spacers, which is the topic of the present work, we
have recently shown [19] that a similar formula to equation (1) is valid, with an
additional exponential damping factor multiplying each oscillatory term in equation (1).
In reference [19], employing a simple tight-binding description for the electronic structure
and a simple phenomenological model for the disorder, the interaction energyδE(L) in the
case of a disordered spacer was proven to be

δE(L) = − 1

L2

∑
ν

Āν cos(Q̄νL+ φ̄ν) exp

(
− L

3ν

)
. (2)

In the above equation the indexν counts the extremal vectors̄Qν on the properly defined
alloy Fermi surface,Āν and φ̄ν are again the amplitudes and the phases of each term and,
finally, the3ν are the characteristic lengths for the damping of each oscillatory term. In
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reference [19] an expression of the form

1

3ν

= 1

λ⊥(k+ν )
− 1

λ⊥(k−ν )
(3)

was found, where⊥ indicates projection of the mean free pathλ(k) in the growth direction
andk+ν andk−ν are the end-points of theνth extremal vector on the Fermi surface parallel to
the direction of growth. The meaning of equations (2) and (3) is that like in the case of pure
metal, the periods of oscillations are a direct measure of the extremal vectors of the bulk
spacer Fermi surface and in addition the question of exponential damping is answered by the
very definition of the Fermi surface itself. In other words, if the Fermi surface of the alloy
is well defined, then3ν is much larger than the oscillation period 2π/Qν and we should
not expect any significant damping within the range of the first few oscillation periods. Of
course equations (1) and (2) are valid for spacer thicknessesL which are large compared
with the monolayer thickness, but for relatively large3ν there is a range of values ofL
for which the asymptotic expression (2) is valid while the oscillations are not yet damped.
It is interesting that, according to equations (1) and (2), the periods of oscillations are not
affected by the properties of ferromagnetic layers and are related only to the topology of
the Fermi surface of the spacer. This is proven experimentally to be true at least for Cu
spacers for Fe and Co ferromagnetic layers (page 96 of [15]).

Unfortunately, not all of the periods predicted by the extremal-vector analysis have been
observed even in the case of pure-metal spacers. In particular the small-size periods are not
observed and these are thought to be suppressed by the interlayer surface roughness [14,
15, 20]. In addition, calculations of the oscillation amplitudes [21–24] indicate that there
must be a difference of several orders of magnitude in the amplitudes of the oscillations
originated by different extremal vectors. Such an analysis has only been performed for
pure-metallic spacers so far, but there is little doubt that this is the case for alloy spacers
as well. Another drawback is the discreteness of the spacer thickness which also restricts
the accuracy in the measured periods to the order of magnitude of the spacer monolayer
size. Finally, we would like to mention two factors that might affect the agreement between
the experimental periods and those predicted from the bulk random-alloy Fermi surface.
The first is related to the randomness of the alloy in the experimental samples. Indeed,
it might be possible for concentration waves to exist in the alloy layer especially close
to the FM layers. This work suggests that these concentration waves, if they exist, are
not strong enough to destroy the agreement between the periods predicted by the random-
alloy Fermi surface study and the experimental ones. The second is the small spacer
thickness in the experimental samples in connection with the definition of the spacer Fermi
surface. Apparently, the theoretical models which relate the oscillation periods to the bulk
spacer Fermi surface make use of the approximation that the spacer layer thickness tends
to infinity. Fortunately, first-principles calculations for Cu spacers for the (100) direction
[21], where the periods predicted by total-energy calculations are compared with the ones
predicted by the Fermi surface analysis, indicate that the asymptotic limit is correct. On
the other hand, the separations of adjacent AF peaks, in experiments [25–27] where more
than two such peaks were observed, is more or less constant. Thus, there is relative
convergence to the asymptotic limit for spacer thicknesses in the range studied in these
experiments.

Nevertheless, in reference [19] the agreement between the measured oscillation periods
for Cu1−xNix alloy spacers and the ones theoretically predicted from the extremal-vector
analysis of the alloy Fermi surface is remarkable. On the other hand the lack of observation
of damping in these oscillations is related in reference [19] to the large size of the calculated
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mean free paths on the Fermi surface.
In this work the results of [19] are summarized and viewed from the alloy Fermi

surface point of view. In section 2 the concept of the alloy Fermi surface is discussed.
The agreement between the calculated Fermi surface and the one measured experimentally
by means of oscillatory magnetic coupling in Cu1−xNix is demonstrated in section 3.
Furthermore, in section 3, we suggest that the lack of observation of oscillation damping
strongly indicates that the alloy Fermi surface is very well defined at the region of the
extremal vectors involved. Measurements of oscillatory magnetic coupling provide a method
that is alternative and complementary to positron annihilation techniques (ACAR) for the
study of binary alloys’ Fermi surfaces. Thus positron annihilation work does not now have
only theoretical calculations of alloy Fermi surfaces for suitable comparison.

2. The alloy Fermi surface

Evidently, in the case of disordered systems such as random binary alloys, the Bloch
wavevectork is not a good quantum number. On the other hand, for systems with a
periodic underlying lattice, the ensemble of configurations may be invariant under lattice
translations. Thus, on average thek-space representation is still valid in spite of the fact
that Bloch states are not eigenstates of the system. Of course, thek-space language is useful
only if the Bloch states have long enough lifetimesτ(k) and the energy uncertainty ¯h/τ(k)
is small compared with the interband energy separations, or equivalently the inverse mean
free paths of the Bloch states are small compared with the interband distances ink-space.
Indeed, it has been proven that this is the typical case for random binary alloys, so the
k-space description of the electronic states, on average, is valid and the Fermi surface of
many of these systems is well defined. As we discuss later, even small necks and pockets
of the pure-host-metal Fermi surface survive in alloying even for large concentrations of
the solute and these features are identified in ACAR [8, 9] as well as oscillatory magnetic
coupling experiments [25–27]. Since for most of the binary alloys the Fermi surface is
well defined across the whole range of concentrations, it is of great interest to see how the
shape and connectivity of the Fermi surface change with concentration. Such changes which
might be discontinuous have been studied theoretically [28] and referred to as electronic
topological transitions.

The basic idea that has been employed for the theoretical study of random binary alloys
is to consider the alloy A1−xBx as a system with its constituents A and B so well mixed
that each lattice site has the same probabilitiesx and 1− x of being occupied by atoms
of type A and B respectively. In that sense, all sites are equivalent and a ‘mean-field’
approximation may be helpful. Of course the ideal solution of the problem would be to
average the interesting quantities over all of the configurations of the system. Since that
is impossible, approximations for this procedure need to be found. The best ‘single-site’
approximation to the problem at hand is the coherent potential approximation [10, 11], in
which the actual crystal disordered potential is replaced by an effective, energy-dependent,
complex, but periodic coherent potential. Thus the average Green’s functionḠ is diagonal
in k-space.

A convenient quantity which makes the above ideas more transparent is the Bloch
spectral function (BSF)AB(E,k). By definition it is the number of states per energy and
k. In the case of a pure periodic system the BSF either as a function ofk or as a function of
E is a sum ofδ-functions located at thesek (or E) where the dispersion relationEk,ν = E
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is satisfied. Thus

AB(E,k) =
∑
ν

δ(E − Ek,ν) = − 1

π
Im

{∑
ν

lim
ε→0

1

E − Ek,ν + ziε
}
= − 1

π
Im {G(E;k, ν)}

(4)

whereG(E;k, ν) is the Green’s function (the resolvent of the periodic crystal Hamiltonian)
in k-space. Of course the BSF for constant energy and equal to the Fermi energy along a
particulark-direction is a sum of delta functions which are located at the intersection points
of the particular direction and the Fermi surface.

In the binary alloy case we should consider the configurationally averaged Green’s
function

Ḡ(E;k, ν) = 1

E − Ek,ν +6(E;k, ν) (5)

where the disorder effect is included in the complex self-energy6(E;k, ν). Self-energy is
a function ofE andk, but if we assume that its imaginary part is small, we can regard it
as constant in a neighbourhood ofE1 andk1 such that

E1− Ek1,ν + Re{6(E1;k1, ν)} = 0

for a givenν. Then, writing theAB(E,k) in terms ofḠ it is easy to show that the BSF
(for constantk = k1) are Lorentzian-like functions ofE centred atE1. Similarly, for
constantE = E1 the BSF are also Lorentzian-like functions ofk centred atk1. Thus, the
effect of alloying is to shorten and broaden theδ-like peaks of the BSF, transforming them
into Lorentzian-like functions. This is correct in the limit of small disorder, i.e. a small
imaginary part of6(E;k, ν), but as we have already mentioned, most of the random binary
alloys are close to that limit.

Just as for a pure-metal case, in the one-electron picture these Bloch-like states can be
fully occupied up to some energy which could be regarded as the Fermi energyEF of the
system. Unlike in the pure-metal case, however, these electron states at this energy have an
energy uncertainty even for zero temperature owing to their finite lifetimes. Nevertheless,
a suitable definition of the alloy Fermi surface can still be given in terms ofAB(E;k), as
the loci of the peaks of the Lorentzian-like BSF for constant energyE = EF in k-space.
Naturally, this is only valid if the BSF fits well to a Lorentzian sum, which is correct in the
limit of small disorder.

The most compelling evidence for the validity of the above picture is the relation of
the features of the alloy Fermi surface with observed properties of the material, and ACAR
data on binary alloys, as well as the oscillatory magnetic coupling across alloy spacers, are
probably the most striking examples of such cases.

3. The Cu1−xNix alloys’ Fermi surfaces

In this section the calculated Fermi surfaces for Cu1−xNix (x < 0.4) binary alloys are
compared with measurements from oscillatory magnetic coupling experiments. The non-
relativistic KKR-CPA electronic structure method [10, 11, 29] was employed for the calc-
ulation of the BSF with constant energyE = EF . For the concentrations encountered, the
Fermi surfaces of Cu1−xNix are topologically the same as that of pure Cu and the extremal
vectors for (111), (100) and (110) directions are analogous to the ones also referred to in
[14] in the case of pure Cu. These extremal vectors are shown in figure 1.

For the (110) direction, for which four different periods are theoretically predicted, a
single one is observed [27]. The neck diameter (Q

(2)
(110) in figure 1(c)) fits well to that period
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Figure 1. The extremal vectors on the Fermi surface of pure Cu plotted in the repeated-zone
scheme. (a), (b) and (c) correspond to three different planes (cuts) in thek-space: on the plane
which is perpendicular to the [11̄0] direction at distance1k = 0 to the0 point (a), on the plane
perpendicular to the [001] direction at1k = 0 (b) and on the plane perpendicular to the [111]
direction and at1k = √3/2 (c).

size and is identified as the extremal vector corresponding to this oscillation [14, 27, 19].
In figure 2 the calculated neck diameter as well as the one measured using ACAR [8, 9]
and the one predicted from the oscillatory magnetic coupling period for the (110) direction
[27] are plotted as functions of the Ni concentration. The agreement between the three
different sets of data is striking. The small amplitude size might explain why the other
three predicted periods originating from the extremal vectorsQ(1)

(110), Q
(3)
(110) andQ(4)

(110) have
not been observed, while their small oscillation period sizes lead one to suspect that the
interlayer surface roughness might also be a reason. Interlayer surface roughness obviously
affects the small oscillation periods more drastically than the large ones [14, 15, 20].

In figure 3(a) another large calculated oscillation period for the (111) direction is
shown as a function of the concentration and compared with experimental values from
references [25, 26]. Again, there is very good agreement between theory and experiment
concerning both the size and concentration dependence of the period. The extremal vector
corresponding to that oscillation isQ(1)

(111) shown in figure 1(a), also being in the area of the
neck.
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Figure 2. The evolution of the diameter of the neck in the Fermi surface of Cu1−xNix binary
alloys with Ni concentrationx, compared with oscillatory magnetic coupling and positron
annihilation experiments. The squares and dashed line correspond to the oscillatory magnetic
coupling experiment of reference [27], while the diamonds with the error bars and the triangles
correspond to positron annihilation (ACAR) experiments from references [8] and [9] respectively.

0.0 10.0 20.0 30.0 40.0

Ni concentration  (%)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
er

io
d 

(A
)

(a) 

KKR−CPA
Parkin  et al
Bobo  et al

P(1)
(111)

0.0 10.0 20.0 30.0 40.0

Ni concentration (%)

2.0

4.0

6.0

8.0

10.0

12.0

P
er

io
d 

 (
A

)

(b)  

P(1)
(100)

P(2)
(100)

Figure 3. The evolution of the calculated periodsP (i)(klm) = 2π [Q(i)
(klm)]

−1 with Ni concentration
for the (111) (a) and (100) (b) directions of growth. In figure 1 the corresponding extremal
vectorsQ(i)

(klm) are shown. In (a) the experimental values from Parkinet al [25] and Boboet al

[26] are also included. The extremal vectorQ(1)
(100) corresponding to the large periodP (1)(100) in

(b) is given byQ(1)
(100) = (4π/a)−Qbelly whereQbelly is the belly radius along the0X direction

in the Brillouin zone anda the lattice constant.

Unfortunately, there are no reported experimental results for oscillatory magnetic
coupling across Cu1−xNix spacers for the (100) direction. The importance of this direction
lies in the fact that two different oscillation periods are present both in theory and experiment
for pure Cu [14] and they both originate from extremal vectors at the belly of the Fermi
surface. In particular, as can be seen in figure 1(a), the two extremal vectors are the vertical
dimensions of the ‘dog’s bone’. There is again significant agreement between theory and
experiment for pure Cu, in spite of the extra complication of extracting the sizes of the two
different oscillation periods from the experimental data. In figure 3(b) we have plotted the
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Figure 4. The Bloch spectral functions for different concentrations along the extremal vectors
Q(2)

110 (a), Q(1)
111 (b), Q(1) (c), Q(2) (d) shown in figure 1. The separation of the two peaks is

the length of the extremal vector, while the halfwidth of the Lorentzian-like peaks is the inverse
mean free path. The vertical grey lines indicate the positions of delta function peaks for pure
Cu. Notice that in all cases the Fermi surface is well defined. Inverting theQ-vectors and the
halfwidths we get the corresponding oscillation periods and mean free paths with the second
being much larger than the first.

calculated oscillation periods for the (100) direction as functions of the Ni concentration.
The amplitude of the large-period oscillation in the case of pure-Cu spacer has been found
to be much smaller than that of the small-period ones [14, 21–23, 30] and it has been
impossible in some experiments [30] to observe the large-period oscillation at all. The
extremal vector corresponding to the small oscillation (which is dominant) connects two
points close to the areas of two different necks, as can be seen in figure 1(a). Thus, it is
worth noticing that all of the clearly observed periods originate from extremal vectors with
their end-points close to the area of the necks of the Fermi surface. However, the size of
the large period corresponds to the size of the (100) belly radius of the Cu Fermi surface
and it would be interesting to observe the analogous period for Cu1−xNix alloy spacers.

In the light of the above discussion it is evident that at least for Cu1−xNix binary alloy
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spacers the oscillation periods correspond to extremal vectors of the alloy Fermi surface
like in the pure-Cu case. There is excellent agreement between theory and experiment for
the evolution of the periods with concentration and the degree of agreement does not seem
to be influenced by alloying.

Finally, we will discuss the question of oscillation damping in the case of coupling across
alloy spacers. We have already mentioned that for those binary alloy spacers for which the
Fermi surface of the bulk alloy is well defined we do not expect to see significant damping
of the oscillations in the range of the first few oscillation periods. Equation (2) implies that
the damping of the oscillations is an entirely local effect, i.e. it depends exclusively on the
mean free paths of the quasiparticle states at the end-points of the extremal vector of the
Fermi surface which corresponds to the particular oscillation. Usually, the extremal vectors
of interest connect two equivalent points on the Fermi surface, so the oscillation damping
depends on the mean free path at a particular point of the Fermi surface projected in the
direction of growth. Thus, the sufficient condition for not observing oscillation damping in
the range of the first few periods is for the Fermi surface of the binary alloy to be well defined
locally. For example, if the extremal vector related to an oscillation spans a neck or pocket
of the Fermi surface, it is sufficient that the inverse mean free paths, a measure of which
are the halfwidths of the Lorentzian-like spectral function peaks, be small in comparison to
the dimensions of the neck or pocket, i.e. the size of the extremal vector. Other parts of
the Fermi surface might be smeared by disorder. A related discussion on the consistency of
the calculated mean free paths from the BSF with the lack of any observation of oscillation
damping in the oscillatory magnetic coupling as well as the residual resistivity of alloys is
reported in reference [19]. In the present work we think it useful to show some calculated
BSF for different concentrations along the directions of the extremal vectors involved in
the oscillatory coupling across Cu1−xNix binary alloy spacers. In figure 4 the BSF along
the direction of the extremal vectors is plotted, forQ(2)

(110) (neck diameter),Q(1)
(111), Q

(1)
(100)

(0X belly radius) andQ(2)
(100). The position of the peaks for each concentration indicates the

end-points of the extremal vector, with their distance being the size of the extremal vector.
We see that in more or less all of the cases the halfwidth of the peaks is indeed small

compared with the size of the vector. Even the small-size neck is well defined (figure 4(a))
for all of the concentrations examined. In all cases, this result is in agreement with either
the experiment [25–27], where antiferromagnetic peaks are observed for large distances for
(111) and (110) growth directions, or theoretical total-energy calculations [31] for the (100)
direction where also no damping was observed or inferred.

4. Conclusion

In conclusion, we have presented theoretical calculations for Cu1−xNix alloy Fermi
surfaces and shown them to be in very good agreement with oscillatory magnetic
coupling experiments across Cu1−xNix alloy spacers. In particular we find an excellent
correspondence between the observed periods and the calculated extremal vectors on the
alloy Fermi surface. On the other hand, however, the oscillation amplitude dependence on
the spacer thickness does not seem to be affected by alloying, in so far as the alloy Fermi
surface is well defined. Thus the oscillation damping expected in the alloy spacer case is
not significant within the first few observed oscillation periods as a result of the very large
mean free paths of the quasiparticle states at the Fermi surface. In other words, as soon as
the binary alloy Fermi surface is well defined, the characteristic length of the damping is
much larger than the oscillation period. The agreement between the calculated and measured
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characteristics of the alloy Fermi surface suggests that oscillatory magnetic coupling across
alloy spacers may become a very important and challenging technique, which along with
the ACAR method could be applied to the study of the Fermi surfaces of random binary
alloys.
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